

pymerkle

[image: Build-Status] [https://gitlab.com/fmerg/pymerkle/commits/master] [image: PyPI-version] [https://pypi.org/project/pymerkle/] [image: Python >= 3.7]

Merkle-tree in Python

Storage agnostic implementation capable of generating inclusion and consistency proofs.

Installation

pip install pymerkle

This will also install cachetools [https://github.com/tkem/cachetools] as a dependency.

Basic API

Let MerkleTree be any class implementing the BaseMerkleTree
interface; e.g.,

from pymerkle import InmemoryTree as MerkleTree

tree = MerkleTree(algorithm='sha256')

Append data into the tree and retrieve the corresponding hash value:

index = tree.append_entry(b'foo') # leaf index

value = tree.get_leaf(index) # leaf hash

Current tree size:

size = tree.get_size() # number of leaves

Current and intermediate state:

state = tree.get_state() # current root-hash

state = tree.get_state(5) # root-hash of size 5 subtree

Inclusion proof

Prove inclusion of the 3-rd leaf hash in the subtree of size 5:

proof = tree.prove_inclusion(3, 5)

Verify the proof against the base hash and the subtree root:

from pymerkle import verify_inclusion

base = tree.get_leaf(3)
root = tree.get_state(5)

verify_inclusion(base, root, proof)

Consistency proof

Prove consistency between the states with size 3 and 5:

proof = tree.prove_consistency(3, 5)

Verify the proof against the respective root hashes:

from pymerkle import verify_consistency

state1 = tree.get_state(3)
state2 = tree.get_state(5)

verify_consistency(state1, state2, proof)

Security

This library requires security review.

Resistance against second-preimage attack

This consists in the following standard technique:

	Upon computing the hash of a leaf node, prepend 0x00 to the payload

	Upon computing the hash of an interior node, prepend 0x01 to the payload

Resistance against CVE-2012-2459 DOS

Contrary to the bitcoin [https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees] specification, lonely leaves are not duplicated
while the tree is growing. Instead, a bifurcation node is created at the
rightmost branch (see next section). As a consequence, the present implementation
should be invulnerable to the CVE-2012-2459 [https://nvd.nist.gov/vuln/detail/CVE-2012-2459] DOS attack
(see also here [https://github.com/bitcoin/bitcoin/blob/bccb4d29a8080bf1ecda1fc235415a11d903a680/src/consensus/merkle.cpp] for insight).

Topology

Interior nodes are not assumed to be stored anywhere and no concrete links are
created between them. The tree structure is determined by the recursive
function which computes intermediate states on the fly and is essentially the same as
RFC 9162 [https://datatracker.ietf.org/doc/html/rfc9162] (Section 2). It turns out to be that of a binary
Sakura tree [https://keccak.team/files/Sakura.pdf] (Section 5.4).

Storage

This library is unopinionated on how leaves are appended to the tree, i.e., how
data is stored in concrete. Cryptographic functionality is encapsulated in the
BaseMerkleTree abstract class, which admits pluggable storage backends
through subclassing. It is the the developer’s choice to decide how to
store data by implementing the interior storage interface of this class.
Any contiguously indexed dataset should do the job. Conversely, given any such
dataset, we should be able to trivially implement a Merkle-tree that is
operable with it.

Optimizations

The performance of a Merkle-tree depends on how efficiently it computes the root-hash
for arbitrary leaf ranges. The recursive version of this function is slow (e.g.,
RFC 9162 [https://datatracker.ietf.org/doc/html/rfc9162], Section 2).

This operation can be optimized using iterations on ranges whose size is
a power of two. This has the effect of making proof generation five times faster,
while peak memory usage remains reasonably low and sublinear with respect to
size. Further boost is given by caching. Practically, a pretty
big tree with sufficiently long uptime will respond instantly with negligible
penalty in memory usage.

Indices and tables

	Index

	Module Index

	Search Page

Public API

Initialization

Although pymerkle comes with concrete tree implementations, its primary
purpose is to provide an abstract base class that encapsulates the
cryptographic functionality of a Merkle-tree:

from pymerkle import BaseMerkleTree

Concrete implementations should inherit from this class and implement its
internal abstract interface. This amounts to customizing leaf storage according
to any desired application logic.

Superclass initialization

Initialization of BaseMerkleTree accepts the options shown below:

class MerkleTree(BaseMerkleTree):

 def __init__(self, *args, **kwargs)
 ...

 super().__init__(
 algorithm='sha256',
 disable_security=False,
 disable_optimizations=False,
 disable_cache=False,
 threshold=128,
 capacity=1024 ** 3
)

 ...

	algorithm: specifies the hash function used by the tree. Defaults to
sha256.

	disable_security: if True, resistance against second-preimage attack will be
deactivated. Use it only for testing or debugging purposes. Defaults to
False.

	disable_optimizations: if True, low-level computations will fallback to
recursive unoptimized functions, similar to those described in RFC 9162 [https://datatracker.ietf.org/doc/html/rfc9162].
Use it for comparison purposes. Defaults to False.

	disable_cache: if True, the results of optimized low-level computations
will not be cached. Use it for comparison purposes. Defaults to False.

	theshold: specifies which outputs of a low-level computation must be
cached depending on the input of the computation. Refer here
for the exact meaning of this parameter. Defaults to 128.

	capacity: cache capacity in bytes. Defaults to 1GiB (which should be
overabundant for any imaginable use case).

See here to see how to implement a Merkle-tree in detail.

Supported hash functions

sha224, sha256, sha384, sha512, sha3_224, sha3_256, sha3_384, sha3_512

Support for Keccak beyond SHA3

Installing pysha3 [https://pypi.org/project/pysha3/] makes available following hash functions:

keccak_224, keccak_256, keccak_384, keccak_512

Warning

Requesting anything except for these raises a ValueError.

Concrete classes

Pymerkle provides two concrete implementations of BaseMerkleTree out of the
box.

InmemoryTree is a non-persistent implementation where nodes are stored at
runtime, intended for investigating and visualising the tree structure:

from pymerkle import InmemoryTree

tree = InmemoryTree(algorithm='sha256')

SqliteTree is a persistent implementation using a SQLite database as
storage, intended for leightweight local applications:

from pymerkle import SqliteTree

tree = SqliteTree('merkle.db', algorithm='sha256')

This will open a connection to the specified database file (after creating it if
not already existent). Alternatively, you can create an in-memory database as
follows:

tree = SqliteTree(':memory:', algorithm='sha256')

Both trees are designed to accept data in binary format and hash it without
further processing. See here for more details on these
classes.

Entries

Entries are appended to the tree as leaves with contiguously increasing index.
The exact type of entries depends on the particular implementation.

Note

In what follows, it is assumed without loss of generality that the tree
accepts data in binary format and hashes it without further processing.

Apending an entry returns the index of the corresponding leaf (counting from one):

>>> tree.append_entry(b'foo')
1
>>> tree.append_entry(b'bar')
2

The index of a leaf can be used to retrieve the corresponding hash value:

>>> tree.get_leaf(1)
b'\x1d9\xfayq\xf4\xbf\x01\xa1\xc2\x0c\xb2\xa3\xfez\xf4he\xca\x9c\xd9\xb8@\xc2\x06=\xf8\xfe\xc4\xffu'
>>>
>>> tree.get_leaf(2)
b'HY\x04\x12\x9b\xdd\xa5\xd1\xb5\xfb\xc6\xbcJ\x82\x95\x9e\xcf\xb9\x04-\xb4M\xc0\x8f\xe8~6\x0b\n?%\x01'

Hash computation

Sometimes it is useful to be able to compute independently the hash value assigned
to an data entry. For example, in order to verify the inclusion proof for an entry
(see below) we need to know its hash value, which can be computed without
querying the tree directly (provided that its binary format can be inferred
according to some known contract).

To do so, we need to configure a standalone hasher that uses the same hash function
as the tree and applies the same security policy:

from pymerkle.hasher import MerkleHasher

hasher = MerkleHasher(tree.algorithm, tree.security)

The commutation between index and entry is

assert tree.get_leaf(1) == hasher.hash_entry(b'foo')

Size

The size of the tree is the current number of leaves (i.e., data entries):

>>> tree.get_size()
5

It coincides with the index of the last appended leaf.

State

The state of the tree is uniquely determined by its current root-hash. This
can be retrieved as follows:

>>> tree.get_state()
b'\xdcRj\xc4\x98\x81&}\x10\xf4<\x80\x8e\xc5\x92\xa1r\x08\xefxs<\xfa\x06""\xbeS[\xc7O"'

The root-hash of any intermediate state can be retrieved by providing the
corresponding size:

>>> tree.get_state(2)
b"9(jJU1b'Q\xd6\x84[\xb8\xef\xb4\xcf3\xbe\xc2\xc5\xf3\xf8C\ru\x84\x87Cq\xa3[\xda"

By convention, the empty tree state is the hash of the empty string:

>>> tree.get_state(0) == tree.hash_empty(b'')
True

Proofs

Pymerke is capable of generating proofs of inclusion and proofs of
consistency. Both are modeled by the verifiable MerkleProof object.

Inclusion

Given any intermediate state, an inclusion proof is a path of
hashes proving that a certain data entry has been appended at some previous moment
and that the tree has not been afterwards tampered. Below the
inclusion proof for the 3-rd entry against the state corresponding to the first
5 leaves:

proof = tree.prove_inclusion(3, 5)

The second argument is optional and defaults to the current tree size. Verification
proceeds as follows:

from pymerkle import verify_inclusion

base = tree.get_leaf(3)
root = tree.get_state(5)

verify_inclusion(base, root, proof)

This checks that the path of hashes is indeed based on the acclaimed hash and
that it resolves to the acclaimed state. Trying to verify against a forged base
or state would raise an InvalidProof error:

>>> from pymerkle.hasher import MerkleHasher
>>>
>>> hasher = MerkleHasher(tree.algorithm, tree.security)
>>> forged = hasher.hash_raw(b'random')
>>>
>>> verify_inclusion(forged, root, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Base hash does not match
>>>
>>> verify_inclusion(base, forged, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: State does not match

Consistency

Given any two intermediate states, a consistency proof is a path of
hashes proving that the second is a valid later state of the first, i.e., that
the tree has not been tampered with in the meanwhile. Below the
consistency proof for the states with three and five leaves respectively:

proof = tree.prove_consistency(3, 5)

The second argument is optional and defaults to the current tree size. Verification
proceeds as follows:

from pymerkle import verify_consistency

state1 = tree.get_state(3)
state2 = tree.get_state(5)

verify_consistency(state1, state2, proof)

This checks that an appropriate subpath of the included path of hashes resolves
to the acclaimed prior state and the path of hashes as a whole resolves to the
acclaimed later state. Trying to verify against forged states would raise an
InvalidProof error:

>>> from pymerkle.hasher import MerkleHasher
>>>
>>> hasher = MerkleHasher(tree.algorithm, tree.security)
>>> forged = hasher.hash_raw(b'random')
>>>
>>> verify_consistency(forged, state2, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Prior state does not match
>>>
>>> verify_consistency(state1, forged, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Later state does not match

Serialization

A MerkleProof object can be serialized as follows:

data = proof.serialize()

This yields a JSON entity similar to this one:

{
 "metadata": {
 "algorithm": "sha256",
 "security": true,
 "size": 5
 },
 "rule": [
 0,
 1,
 0,
 0
],
 "subset": [],
 "path": [
 "4c79d0d62f7cf5ca8874155f2d3b875f2625da2bb3abc86bbd6833f25ba90e51",
 "5c7117fb9edb0cec387257891105da6a6616722af247083e2d6eda671529cdc5",
 "9531b48579f0e741979005d67ba64455a9f68b06630b3c431152d445ecd2716a",
 "bf36e59f88d0623d36dd3860e24a44fcc6bcd2ad88fdf67249dc1953f3605b51"
]
}

The metadata section contains the parameters required for configuring the
verification hasher (algorithm and security) along with the size of the
state against which the proof was requested (size). The latter can be used
in order to request the acclaimed state needed for proof verification (if not
otherwise available). Rule determines parenthetization of hashes during
path resolution and subset selects the hashes resolving to the acclaimed
prior state (makes sense only for consistency proofs).

The verifiable proof-object can be retrieved as follows:

from pymerkle import MerkleProof

proof = MerkleProof.deserialize(data)

Storage

Pymerkle is unopinionated on how leaves are appended to the tree, i.e., how
entries should be stored in concrete. “Leaves” is an abstraction for the
contiguously indexed data which the tree operates upon, no matter what their
concrete form in persistent or volatile memory is. Specifying how to store
entries and how to encode them (so that they become amenable to hashing
operations) belongs to the particular application logic and amounts to
implementing the internal storage interface presented in this section.

Interface

A Merkle-tree implementation is a concrete subclass of the BaseMerkleTree
abstract base class. The latter encapsulates the cryptographic
functionality in a storage agnostic fashion, i.e., without making assumptions
about how entries are stored and accessed. It operates on top of an abstract
storage interface, which is to be implemented by any concrete subclass:

from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

 def __init__(self, algorithm='sha256'):
 """
 Storage setup and superclass initialization
 """

 def _encode_entry(self, data):
 """
 Prepares data entry for hashing
 """

 def _store_leaf(self, data, digest):
 """
 Stores data hash in a new leaf and returns index
 """

 def _get_leaf(self, index):
 """
 Returns the hash stored by the leaf specified
 """

 def _get_leaves(self, offset, width):
 """
 Returns hashes corresponding to the specified leaf range
 """

 def _get_size(self):
 """
 Returns the current number of leaves
 """

	_encode_entry: converts data entry to binary, so that it becomes amenable
to hashing.

	_store_leaf: stores the output of hashing alogn with the original entry
and returns the leaf index.

	_get_leaf: leaf hash by index (counting from one)

	_get_leaves: an iterable of the leaf hashes corresponding to the
specified range

	_get_size: current tree size (number of leaves).

Various strategies are here possible. For example, data entry could be
further processed by _store_leaf in order to conform to a given database
schema and have the hash value stored in the appropriate table.
Or, if a predefined schema is given that does not make space for hashes,
the hash value could be forwarded to a dedicated datastore for future access;
_get_leaf and _get_leaves would then have to access that separate datastore
in order to make available the hash value.

Note

It is important to implement _get_leaves as efficiently as
possible depending on your working framework.
See Optimizations for details.

Here the exact interface to be implemented:

pymerkle/base.py

class BaseMerkleTree(MerkleHasher, metaclass=ABCMeta):
 ...

 @abstractmethod
 def _encode_entry(self, data):
 """
 Should return the binary format of the provided data entry.

 :param data: data to encode
 :type data: whatever expected according to application logic
 :rtype: bytes
 """

 @abstractmethod
 def _store_leaf(self, data, digest):
 """
 Should create a new leaf storing the provided data entry along with
 its hash value.

 :param data: data entry
 :type data: whatever expected according to application logic
 :param digest: hashed data
 :type digest: bytes
 :returns: index of newly appended leaf counting from one
 :rtype: int
 """

 @abstractmethod
 def _get_leaf(self, index):
 """
 Should return the hash stored at the specified leaf.

 :param index: leaf index counting from one
 :type index: int
 :rtype: bytes
 """

 @abstractmethod
 def _get_leaves(self, offset, width):
 """
 Should return in respective order the hashes stored by the leaves in
 the specified range.

 :param offset: starting position counting from zero
 :type offset: int
 :param width: number of leaves to consider
 :type width: int
 :rtype: iterable of bytes
 """

 @abstractmethod
 def _get_size(self):
 """
 Should return the current number of leaves

 :rtype: int
 """
 ...

Implementations

Pymerkle provides out of the box the following concrete implementations
of BaseMerkleTree.

In memory

Warning

This is a very memory inefficient implementation. Use it
for debugging, testing and investigating the tree structure.

InmemoryTree is a non-persistent implementation where nodes reside in
runtime.

from pymerkle import InmemoryTree

tree = InmemoryTree(algorithm='sha256')

Data is expected to be provided in binary:

index = tree.append_entry(b'foo')

It is hashed without further processing and can be accessed as follows:

data = tree.leaves[index - 1].entry
assert data == b'foo'

State coincides with the value of the current root-node:

assert tree.get_state() == tree.root.value

Nodes have a right, left and parent attribute, pointing to their
right child, left child and parent node respectively. (Leaf nodes have no
children, whereas the current root-node has no parent). These linkages allow
for concrete path traversals. For example, the following loop detects the
root-node starting from the first leaf of a non-empty tree:

leaf = tree.leaves[0]

curr = leaf
while curr.parent:
 curr = curr.parent

assert curr == tree.root

Concrete path traversals are used under the hood for visualizing the tree by
means of printing:

>>> print(tree)

 └─346ec544...
 ├──bbe0bdaf...
 │ ├──39286a4a...
 │ │ ├──1d2039fa...
 │ │ └──48590412...
 │ └──0bf15c4f...
 │ ├──b06d6958...
 │ └──5a43bc14...
 └──4c715fb1...
 ├──7a4b8eff...
 │ ├──2e219794...
 │ └──1c0c3f26...
 └──e9345fea...
 ├──2c3bb97e...
 └──dcd08bea...

Sqlite

SqliteTree uses a SQLite database to persistently store entries.
It is a wrapper of sqlite3 [https://docs.python.org/3/library/sqlite3.html], suitable for leightweight applications
that do not require separate server processes for the database.

from pymerkle import SqliteTree

tree = SqliteTree('merkle.db')

This opens a connection to the provided database, which will also be created
if not already existent.

Note

The database schema consists of a single table called leaf
with two columns: index, which is the primary key serving as leaf
index, and entry, which is a blob field storing the appended data.

Data is expected to be provided in binary:

index = tree.append_entry(b'foo')

It is hashed without further processing and can be accessed as follows:

data = tree.get_entry(index)
assert data == b'foo'

In order to efficiently append multiple entries at once, you can do the
following:

entries = [f'entry-{i + 1}'.encode() for i in range(100000)]

tree.append_entries(entries, chunksize=1024)

where chunksize controls the number of insertions per database transaction
(defaults to 100,000).

It is suggested to close the connection to the database when ready:

tree.con.close()

Alternatively, initialize the tree as context-manager to ensure that this will
be done without taking explicit care:

with SqliteTree('merkle.db') as tree:
 ...

Examples

Warning

The following exaples are only for the purpose of reference and understanding

Simple list

This is a simple non-persistent implementation utilizing a list as storage. It
expects entries to be strings, which it encodes in utf-8 before hashing.

from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

 def __init__(self, algorithm='sha256'):
 self.hashes = []

 super().__init__(algorithm)

 def _encode_entry(self, data):
 return data.encode('utf-8')

 def _store_leaf(self, data, digest):
 self.hashes += [digest]

 return len(self.hashes)

 def _get_leaf(self, index):
 value = self.hashes[index - 1]

 return value

 def _get_leaves(self, offset, width):
 values = self.hashes[offset: offset + width]

 return values

 def _get_size(self):
 return len(self.hashes)

Unix DBM

This is a hasty implementing using dbm [https://docs.python.org/3/library/dbm.html] to persistently store entries in
a "merkledb" file. It expects strings as entries and encodes them in
utf-8 before hashing.

import dbm
from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

 def __init__(self, algorithm='sha256'):
 self.dbfile = 'merkledb'
 self.mode = 0o666

 with dbm.open(self.dbfile, 'c', mode=self.mode) as db:
 pass

 super().__init__(algorithm)

 def _encode_entry(self, data):
 return data.encode('utf-8')

 def _store_leaf(self, data, digest):
 with dbm.open(self.dbfile, 'w', mode=self.mode) as db:
 index = len(db) + 1
 db[hex(index)] = b'|'.join(data, digest)

 return index

 def _get_leaf(self, index):
 with dbm.open(self.dbfile, 'r', mode=self.mode) as db:
 value = db[hex(index)].split(b'|')[1]

 return value

 def _get_leaves(self, offset, width):
 values = []
 with dbm.open(self.dbfile, 'r', mode=self.mode) as db:
 for index in range(offset + 1, width + 1):
 value = db[hex(index)].split(b'|')[index]
 values += [value]

 return value

 def _get_size(self):
 with dbm.open(self.dbfile, 'r', mode=self.mode) as db:
 size = len(db)

 return size

Django app

Optimizations

Interior nodes are not assumed to be stored anywhere. The tree structure is determined by the
function which computes root-hashes for arbitrary leaf ranges on the fly.
The performance of the tree depends highly on the efficiency of this operation.
The recursive version of this function (e.g., RFC 9162 [https://datatracker.ietf.org/doc/html/rfc9162], Section 2) is slow,
affecting significantly state computation and generation of proofs.

Subroots

The above operation can be made iterative by accumulatively hashing together
the root-hashes for ranges whose size is a power of two (“subroots”)
and can as such be computed efficiently. Subroot computation has significant impact
on performance (>500% speedup) while keeping peak memory usage
reasonably low (e.g., 200 MiB for a tree with several tens of millions of entries) and
linear with respect to tree size.

Note

For, say, comparison purposes, you can disable this feature by passing
disable_optimizations=True when initializing the BaseMerkleTree
superclass.

Effect of I/O operation

Subroot computation is CPU-bound except for loading leaf hashes to memory. This
operation is implementation specific, since it depends on the particular
storage backend which the tree operates upon (see _get_leaves in
this section). The effect of this operation (usually I/O)
can be significant. Take care to implement it in the most efficient way facilitated by
your working framework (e.g., bulk fetching the dataset).

Caching

In view of the above technique, subroot computation is the only massively repeated
and relatively costly operation. It thus makes sense to apply memoization
for ranges whose size exceeds a certain threshold (128 leaves by default).
For example, after sufficiently many cache hits (e.g. 2MiB cache memory), proof generation
becomes at least 5 times faster for a tree with several tens of million of entries.
Practically, a pretty big tree with sufficiently long uptime will respond instantly
with negligible penalty in memory usage.

Cache capacity is controlled in bytes via the capacity parameter, which is
passed to BaseMerkleTree and defaults to 1GiB (this should be
overabundant for any imaginable use case). The minimum size of leaf ranges with
cacheable root-hash is controlled via the threshold parameter, which is
similarly passed to BaseMerkleTree and defaults to 128.

Note

For, say, comparison purposes, you can disable this feature by passing
disable_cache=True when initializing the BaseMerkleTree superclass.

pymerkle

	pymerkle package
	Subpackages
	pymerkle.concrete package
	Submodules

	pymerkle.concrete.inmemory module

	pymerkle.concrete.sqlite module

	Submodules

	pymerkle.constants module

	pymerkle.core module

	pymerkle.hasher module

	pymerkle.proof module

	pymerkle.utils module

pymerkle package

Subpackages

	pymerkle.concrete package
	Submodules

	pymerkle.concrete.inmemory module

	pymerkle.concrete.sqlite module

Submodules

pymerkle.constants module

pymerkle.core module

pymerkle.hasher module

pymerkle.proof module

pymerkle.utils module

pymerkle.concrete package

Submodules

pymerkle.concrete.inmemory module

pymerkle.concrete.sqlite module

Index

	Public API

	Storage

	Optimizations

	Reference
	pymerkle package
	pymerkle.concrete package

 nav.xhtml

 Table of Contents

 		
 pymerkle

_static/plus.png

_static/file.png

_static/minus.png

