
pymerkle
Release 6.1.0

fmerg

Aug 30, 2023

CONTENTS

1 Merkle-tree in Python 3
1.1 Installation . 3
1.2 Basic API . 3
1.3 Security . 4
1.4 Topology . 5
1.5 Storage . 5
1.6 Optimizations . 5
1.7 Indices and tables . 19

i

ii

pymerkle, Release 6.1.0

CONTENTS 1

https://gitlab.com/fmerg/pymerkle/commits/master
https://pypi.org/project/pymerkle/

pymerkle, Release 6.1.0

2 CONTENTS

CHAPTER

ONE

MERKLE-TREE IN PYTHON

Storage agnostic implementation capable of generating inclusion and consistency proofs.

1.1 Installation

pip install pymerkle

This will also install cachetools as a dependency.

1.2 Basic API

Let MerkleTree be any class implementing the BaseMerkleTree interface; e.g.,

from pymerkle import InmemoryTree as MerkleTree

tree = MerkleTree(algorithm='sha256')

Append data into the tree and retrieve the corresponding hash value:

index = tree.append_entry(b'foo') # leaf index

value = tree.get_leaf(index) # leaf hash

Current tree size:

size = tree.get_size() # number of leaves

Current and intermediate state:

state = tree.get_state() # current root-hash

state = tree.get_state(5) # root-hash of size 5 subtree

3

https://github.com/tkem/cachetools

pymerkle, Release 6.1.0

1.2.1 Inclusion proof

Prove inclusion of the 3-rd leaf hash in the subtree of size 5:

proof = tree.prove_inclusion(3, 5)

Verify the proof against the base hash and the subtree root:

from pymerkle import verify_inclusion

base = tree.get_leaf(3)
root = tree.get_state(5)

verify_inclusion(base, root, proof)

1.2.2 Consistency proof

Prove consistency between the states with size 3 and 5:

proof = tree.prove_consistency(3, 5)

Verify the proof against the respective root hashes:

from pymerkle import verify_consistency

state1 = tree.get_state(3)
state2 = tree.get_state(5)

verify_consistency(state1, state2, proof)

1.3 Security

This library requires security review.

1.3.1 Resistance against second-preimage attack

This consists in the following standard technique:

• Upon computing the hash of a leaf node, prepend 0x00 to the payload

• Upon computing the hash of an interior node, prepend 0x01 to the payload

4 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

1.3.2 Resistance against CVE-2012-2459 DOS

Contrary to the bitcoin specification, lonely leaves are not duplicated while the tree is growing. Instead, a bifurcation
node is created at the rightmost branch (see next section). As a consequence, the present implementation should be
invulnerable to the CVE-2012-2459 DOS attack (see also here for insight).

1.4 Topology

Interior nodes are not assumed to be stored anywhere and no concrete links are created between them. The tree structure
is determined by the recursive function which computes intermediate states on the fly and is essentially the same as
RFC 9162 (Section 2). It turns out to be that of a binary Sakura tree (Section 5.4).

1.5 Storage

This library is unopinionated on how leaves are appended to the tree, i.e., how data is stored in concrete. Cryptographic
functionality is encapsulated in the BaseMerkleTree abstract class, which admits pluggable storage backends through
subclassing. It is the the developer’s choice to decide how to store data by implementing the interior storage interface
of this class. Any contiguously indexed dataset should do the job. Conversely, given any such dataset, we should be
able to trivially implement a Merkle-tree that is operable with it.

1.6 Optimizations

The performance of a Merkle-tree depends on how efficiently it computes the root-hash for arbitrary leaf ranges. The
recursive version of this function is slow (e.g., RFC 9162, Section 2).

This operation can be optimized using iterations on ranges whose size is a power of two. This has the effect of making
proof generation five times faster, while peak memory usage remains reasonably low and sublinear with respect to size.
Further boost is given by caching. Practically, a pretty big tree with sufficiently long uptime will respond instantly with
negligible penalty in memory usage.

1.6.1 Public API

Initialization

Although pymerkle comes with concrete tree implementations, its primary purpose is to provide an abstract base class
that encapsulates the cryptographic functionality of a Merkle-tree:

from pymerkle import BaseMerkleTree

Concrete implementations should inherit from this class and implement its internal abstract interface. This amounts to
customizing leaf storage according to any desired application logic.

1.4. Topology 5

https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees
https://nvd.nist.gov/vuln/detail/CVE-2012-2459
https://github.com/bitcoin/bitcoin/blob/bccb4d29a8080bf1ecda1fc235415a11d903a680/src/consensus/merkle.cpp
https://datatracker.ietf.org/doc/html/rfc9162
https://keccak.team/files/Sakura.pdf
https://datatracker.ietf.org/doc/html/rfc9162

pymerkle, Release 6.1.0

Superclass initialization

Initialization of BaseMerkleTree accepts the options shown below:

class MerkleTree(BaseMerkleTree):

def __init__(self, *args, **kwargs)
...

super().__init__(
algorithm='sha256',
disable_security=False,
disable_optimizations=False,
disable_cache=False,
threshold=128,
capacity=1024 ** 3

)

...

• algorithm: specifies the hash function used by the tree. Defaults to sha256.

• disable_security: if True, resistance against second-preimage attack will be deactivated. Use it only for
testing or debugging purposes. Defaults to False.

• disable_optimizations: if True, low-level computations will fallback to recursive unoptimized functions,
similar to those described in RFC 9162. Use it for comparison purposes. Defaults to False.

• disable_cache: if True, the results of optimized low-level computations will not be cached. Use it for com-
parison purposes. Defaults to False.

• theshold: specifies which outputs of a low-level computation must be cached depending on the input of the
computation. Refer here for the exact meaning of this parameter. Defaults to 128.

• capacity: cache capacity in bytes. Defaults to 1GiB (which should be overabundant for any imaginable use
case).

See here to see how to implement a Merkle-tree in detail.

Supported hash functions

sha224, sha256, sha384, sha512, sha3_224, sha3_256, sha3_384, sha3_512

Support for Keccak beyond SHA3

Installing pysha3 makes available following hash functions:

keccak_224, keccak_256, keccak_384, keccak_512

Warning: Requesting anything except for these raises a ValueError.

6 Chapter 1. Merkle-tree in Python

https://datatracker.ietf.org/doc/html/rfc9162
https://pypi.org/project/pysha3/

pymerkle, Release 6.1.0

Concrete classes

Pymerkle provides two concrete implementations of BaseMerkleTree out of the box.

InmemoryTree is a non-persistent implementation where nodes are stored at runtime, intended for investigating and
visualising the tree structure:

from pymerkle import InmemoryTree

tree = InmemoryTree(algorithm='sha256')

SqliteTree is a persistent implementation using a SQLite database as storage, intended for leightweight local appli-
cations:

from pymerkle import SqliteTree

tree = SqliteTree('merkle.db', algorithm='sha256')

This will open a connection to the specified database file (after creating it if not already existent). Alternatively, you
can create an in-memory database as follows:

tree = SqliteTree(':memory:', algorithm='sha256')

Both trees are designed to accept data in binary format and hash it without further processing. See here for more details
on these classes.

Entries

Entries are appended to the tree as leaves with contiguously increasing index. The exact type of entries depends on the
particular implementation.

Note: In what follows, it is assumed without loss of generality that the tree accepts data in binary format and hashes
it without further processing.

Apending an entry returns the index of the corresponding leaf (counting from one):

>>> tree.append_entry(b'foo')
1
>>> tree.append_entry(b'bar')
2

The index of a leaf can be used to retrieve the corresponding hash value:

>>> tree.get_leaf(1)
b'\x1d9\xfayq\xf4\xbf\x01\xa1\xc2\x0c\xb2\xa3\xfez\xf4he\xca\x9c\xd9\xb8@\xc2\x06=\xf8\
→˓xfe\xc4\xffu'
>>>
>>> tree.get_leaf(2)
b'HY\x04\x12\x9b\xdd\xa5\xd1\xb5\xfb\xc6\xbcJ\x82\x95\x9e\xcf\xb9\x04-\xb4M\xc0\x8f\xe8~
→˓6\x0b\n?%\x01'

1.6. Optimizations 7

pymerkle, Release 6.1.0

Hash computation

Sometimes it is useful to be able to compute independently the hash value assigned to an data entry. For example, in
order to verify the inclusion proof for an entry (see below) we need to know its hash value, which can be computed
without querying the tree directly (provided that its binary format can be inferred according to some known contract).

To do so, we need to configure a standalone hasher that uses the same hash function as the tree and applies the same
security policy:

from pymerkle.hasher import MerkleHasher

hasher = MerkleHasher(tree.algorithm, tree.security)

The commutation between index and entry is

assert tree.get_leaf(1) == hasher.hash_entry(b'foo')

Size

The size of the tree is the current number of leaves (i.e., data entries):

>>> tree.get_size()
5

It coincides with the index of the last appended leaf.

State

The state of the tree is uniquely determined by its current root-hash. This can be retrieved as follows:

>>> tree.get_state()
b'\xdcRj\xc4\x98\x81&}\x10\xf4<\x80\x8e\xc5\x92\xa1r\x08\xefxs<\xfa\x06""\xbeS[\xc7O"'

The root-hash of any intermediate state can be retrieved by providing the corresponding size:

>>> tree.get_state(2)
b"9(jJU1b'Q\xd6\x84[\xb8\xef\xb4\xcf3\xbe\xc2\xc5\xf3\xf8C\ru\x84\x87Cq\xa3[\xda"

By convention, the empty tree state is the hash of the empty string:

>>> tree.get_state(0) == tree.hash_empty(b'')
True

8 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

Proofs

Pymerke is capable of generating proofs of inclusion and proofs of consistency. Both are modeled by the verifiable
MerkleProof object.

Inclusion

Given any intermediate state, an inclusion proof is a path of hashes proving that a certain data entry has been appended
at some previous moment and that the tree has not been afterwards tampered. Below the inclusion proof for the 3-rd
entry against the state corresponding to the first 5 leaves:

proof = tree.prove_inclusion(3, 5)

The second argument is optional and defaults to the current tree size. Verification proceeds as follows:

from pymerkle import verify_inclusion

base = tree.get_leaf(3)
root = tree.get_state(5)

verify_inclusion(base, root, proof)

This checks that the path of hashes is indeed based on the acclaimed hash and that it resolves to the acclaimed state.
Trying to verify against a forged base or state would raise an InvalidProof error:

>>> from pymerkle.hasher import MerkleHasher
>>>
>>> hasher = MerkleHasher(tree.algorithm, tree.security)
>>> forged = hasher.hash_raw(b'random')
>>>
>>> verify_inclusion(forged, root, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Base hash does not match
>>>
>>> verify_inclusion(base, forged, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: State does not match

Consistency

Given any two intermediate states, a consistency proof is a path of hashes proving that the second is a valid later state
of the first, i.e., that the tree has not been tampered with in the meanwhile. Below the consistency proof for the states
with three and five leaves respectively:

proof = tree.prove_consistency(3, 5)

The second argument is optional and defaults to the current tree size. Verification proceeds as follows:

1.6. Optimizations 9

pymerkle, Release 6.1.0

from pymerkle import verify_consistency

state1 = tree.get_state(3)
state2 = tree.get_state(5)

verify_consistency(state1, state2, proof)

This checks that an appropriate subpath of the included path of hashes resolves to the acclaimed prior state and the
path of hashes as a whole resolves to the acclaimed later state. Trying to verify against forged states would raise an
InvalidProof error:

>>> from pymerkle.hasher import MerkleHasher
>>>
>>> hasher = MerkleHasher(tree.algorithm, tree.security)
>>> forged = hasher.hash_raw(b'random')
>>>
>>> verify_consistency(forged, state2, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Prior state does not match
>>>
>>> verify_consistency(state1, forged, proof)
Traceback (most recent call last):
...
pymerkle.proof.InvalidProof: Later state does not match

Serialization

A MerkleProof object can be serialized as follows:

data = proof.serialize()

This yields a JSON entity similar to this one:

{
"metadata": {

"algorithm": "sha256",
"security": true,
"size": 5

},
"rule": [

0,
1,
0,
0

],
"subset": [],
"path": [

"4c79d0d62f7cf5ca8874155f2d3b875f2625da2bb3abc86bbd6833f25ba90e51",
"5c7117fb9edb0cec387257891105da6a6616722af247083e2d6eda671529cdc5",
"9531b48579f0e741979005d67ba64455a9f68b06630b3c431152d445ecd2716a",
"bf36e59f88d0623d36dd3860e24a44fcc6bcd2ad88fdf67249dc1953f3605b51"

(continues on next page)

10 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

(continued from previous page)

]
}

The metadata section contains the parameters required for configuring the verification hasher (algorithm and security)
along with the size of the state against which the proof was requested (size). The latter can be used in order to request
the acclaimed state needed for proof verification (if not otherwise available). Rule determines parenthetization of
hashes during path resolution and subset selects the hashes resolving to the acclaimed prior state (makes sense only for
consistency proofs).

The verifiable proof-object can be retrieved as follows:

from pymerkle import MerkleProof

proof = MerkleProof.deserialize(data)

1.6.2 Storage

Pymerkle is unopinionated on how leaves are appended to the tree, i.e., how entries should be stored in concrete.
“Leaves” is an abstraction for the contiguously indexed data which the tree operates upon, no matter what their concrete
form in persistent or volatile memory is. Specifying how to store entries and how to encode them (so that they become
amenable to hashing operations) belongs to the particular application logic and amounts to implementing the internal
storage interface presented in this section.

Interface

A Merkle-tree implementation is a concrete subclass of the BaseMerkleTree abstract base class. The latter encapsu-
lates the cryptographic functionality in a storage agnostic fashion, i.e., without making assumptions about how entries
are stored and accessed. It operates on top of an abstract storage interface, which is to be implemented by any concrete
subclass:

from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

def __init__(self, algorithm='sha256'):
"""
Storage setup and superclass initialization
"""

def _encode_entry(self, data):
"""
Prepares data entry for hashing
"""

def _store_leaf(self, data, digest):
"""
Stores data hash in a new leaf and returns index
"""

def _get_leaf(self, index):
(continues on next page)

1.6. Optimizations 11

pymerkle, Release 6.1.0

(continued from previous page)

"""
Returns the hash stored by the leaf specified
"""

def _get_leaves(self, offset, width):
"""
Returns hashes corresponding to the specified leaf range
"""

def _get_size(self):
"""
Returns the current number of leaves
"""

• _encode_entry: converts data entry to binary, so that it becomes amenable to hashing.

• _store_leaf: stores the output of hashing alogn with the original entry and returns the leaf index.

• _get_leaf: leaf hash by index (counting from one)

• _get_leaves: an iterable of the leaf hashes corresponding to the specified range

• _get_size: current tree size (number of leaves).

Various strategies are here possible. For example, data entry could be further processed by _store_leaf in order to
conform to a given database schema and have the hash value stored in the appropriate table. Or, if a predefined schema
is given that does not make space for hashes, the hash value could be forwarded to a dedicated datastore for future
access; _get_leaf and _get_leaves would then have to access that separate datastore in order to make available the
hash value.

Note: It is important to implement _get_leaves as efficiently as possible depending on your working framework.
See Optimizations for details.

Here the exact interface to be implemented:

pymerkle/base.py

class BaseMerkleTree(MerkleHasher, metaclass=ABCMeta):
...

@abstractmethod
def _encode_entry(self, data):

"""
Should return the binary format of the provided data entry.

:param data: data to encode
:type data: whatever expected according to application logic
:rtype: bytes
"""

@abstractmethod
def _store_leaf(self, data, digest):

"""
(continues on next page)

12 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

(continued from previous page)

Should create a new leaf storing the provided data entry along with
its hash value.

:param data: data entry
:type data: whatever expected according to application logic
:param digest: hashed data
:type digest: bytes
:returns: index of newly appended leaf counting from one
:rtype: int
"""

@abstractmethod
def _get_leaf(self, index):

"""
Should return the hash stored at the specified leaf.

:param index: leaf index counting from one
:type index: int
:rtype: bytes
"""

@abstractmethod
def _get_leaves(self, offset, width):

"""
Should return in respective order the hashes stored by the leaves in
the specified range.

:param offset: starting position counting from zero
:type offset: int
:param width: number of leaves to consider
:type width: int
:rtype: iterable of bytes
"""

@abstractmethod
def _get_size(self):

"""
Should return the current number of leaves

:rtype: int
"""

...

1.6. Optimizations 13

pymerkle, Release 6.1.0

Implementations

Pymerkle provides out of the box the following concrete implementations of BaseMerkleTree.

In memory

Warning: This is a very memory inefficient implementation. Use it for debugging, testing and investigating the
tree structure.

InmemoryTree is a non-persistent implementation where nodes reside in runtime.

from pymerkle import InmemoryTree

tree = InmemoryTree(algorithm='sha256')

Data is expected to be provided in binary:

index = tree.append_entry(b'foo')

It is hashed without further processing and can be accessed as follows:

data = tree.leaves[index - 1].entry
assert data == b'foo'

State coincides with the value of the current root-node:

assert tree.get_state() == tree.root.value

Nodes have a right, left and parent attribute, pointing to their right child, left child and parent node respectively.
(Leaf nodes have no children, whereas the current root-node has no parent). These linkages allow for concrete path
traversals. For example, the following loop detects the root-node starting from the first leaf of a non-empty tree:

leaf = tree.leaves[0]

curr = leaf
while curr.parent:
curr = curr.parent

assert curr == tree.root

Concrete path traversals are used under the hood for visualizing the tree by means of printing:

>>> print(tree)

346ec544...
bbe0bdaf...

39286a4a...
1d2039fa...
48590412...

0bf15c4f...
b06d6958...
5a43bc14...

(continues on next page)

14 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

(continued from previous page)

4c715fb1...
7a4b8eff...

2e219794...
1c0c3f26...

e9345fea...
2c3bb97e...
dcd08bea...

Sqlite

SqliteTree uses a SQLite database to persistently store entries. It is a wrapper of sqlite3, suitable for leightweight
applications that do not require separate server processes for the database.

from pymerkle import SqliteTree

tree = SqliteTree('merkle.db')

This opens a connection to the provided database, which will also be created if not already existent.

Note: The database schema consists of a single table called leaf with two columns: index, which is the primary key
serving as leaf index, and entry, which is a blob field storing the appended data.

Data is expected to be provided in binary:

index = tree.append_entry(b'foo')

It is hashed without further processing and can be accessed as follows:

data = tree.get_entry(index)
assert data == b'foo'

In order to efficiently append multiple entries at once, you can do the following:

entries = [f'entry-{i + 1}'.encode() for i in range(100000)]

tree.append_entries(entries, chunksize=1024)

where chunksize controls the number of insertions per database transaction (defaults to 100,000).

It is suggested to close the connection to the database when ready:

tree.con.close()

Alternatively, initialize the tree as context-manager to ensure that this will be done without taking explicit care:

with SqliteTree('merkle.db') as tree:
...

1.6. Optimizations 15

https://docs.python.org/3/library/sqlite3.html

pymerkle, Release 6.1.0

Examples

Warning: The following exaples are only for the purpose of reference and understanding

Simple list

This is a simple non-persistent implementation utilizing a list as storage. It expects entries to be strings, which it
encodes in utf-8 before hashing.

from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

def __init__(self, algorithm='sha256'):
self.hashes = []

super().__init__(algorithm)

def _encode_entry(self, data):
return data.encode('utf-8')

def _store_leaf(self, data, digest):
self.hashes += [digest]

return len(self.hashes)

def _get_leaf(self, index):
value = self.hashes[index - 1]

return value

def _get_leaves(self, offset, width):
values = self.hashes[offset: offset + width]

return values

def _get_size(self):
return len(self.hashes)

16 Chapter 1. Merkle-tree in Python

pymerkle, Release 6.1.0

Unix DBM

This is a hasty implementing using dbm to persistently store entries in a "merkledb" file. It expects strings as entries
and encodes them in utf-8 before hashing.

import dbm
from pymerkle import BaseMerkleTree

class MerkleTree(BaseMerkleTree):

def __init__(self, algorithm='sha256'):
self.dbfile = 'merkledb'
self.mode = 0o666

with dbm.open(self.dbfile, 'c', mode=self.mode) as db:
pass

super().__init__(algorithm)

def _encode_entry(self, data):
return data.encode('utf-8')

def _store_leaf(self, data, digest):
with dbm.open(self.dbfile, 'w', mode=self.mode) as db:

index = len(db) + 1
db[hex(index)] = b'|'.join(data, digest)

return index

def _get_leaf(self, index):
with dbm.open(self.dbfile, 'r', mode=self.mode) as db:

value = db[hex(index)].split(b'|')[1]

return value

def _get_leaves(self, offset, width):
values = []
with dbm.open(self.dbfile, 'r', mode=self.mode) as db:

for index in range(offset + 1, width + 1):
value = db[hex(index)].split(b'|')[index]
values += [value]

return value

def _get_size(self):
with dbm.open(self.dbfile, 'r', mode=self.mode) as db:

size = len(db)
(continues on next page)

1.6. Optimizations 17

https://docs.python.org/3/library/dbm.html

pymerkle, Release 6.1.0

(continued from previous page)

return size

Django app

1.6.3 Optimizations

Interior nodes are not assumed to be stored anywhere. The tree structure is determined by the function which computes
root-hashes for arbitrary leaf ranges on the fly. The performance of the tree depends highly on the efficiency of this
operation. The recursive version of this function (e.g., RFC 9162, Section 2) is slow, affecting significantly state
computation and generation of proofs.

Subroots

The above operation can be made iterative by accumulatively hashing together the root-hashes for ranges whose size
is a power of two (“subroots”) and can as such be computed efficiently. Subroot computation has significant impact
on performance (>500% speedup) while keeping peak memory usage reasonably low (e.g., 200 MiB for a tree with
several tens of millions of entries) and linear with respect to tree size.

Note: For, say, comparison purposes, you can disable this feature by passing disable_optimizations=True when
initializing the BaseMerkleTree superclass.

Effect of I/O operation

Subroot computation is CPU-bound except for loading leaf hashes to memory. This operation is implementation spe-
cific, since it depends on the particular storage backend which the tree operates upon (see _get_leaves in this section).
The effect of this operation (usually I/O) can be significant. Take care to implement it in the most efficient way facilitated
by your working framework (e.g., bulk fetching the dataset).

Caching

In view of the above technique, subroot computation is the only massively repeated and relatively costly operation. It
thus makes sense to apply memoization for ranges whose size exceeds a certain threshold (128 leaves by default). For
example, after sufficiently many cache hits (e.g. 2MiB cache memory), proof generation becomes at least 5 times faster
for a tree with several tens of million of entries. Practically, a pretty big tree with sufficiently long uptime will respond
instantly with negligible penalty in memory usage.

Cache capacity is controlled in bytes via the capacity parameter, which is passed to BaseMerkleTree and defaults
to 1GiB (this should be overabundant for any imaginable use case). The minimum size of leaf ranges with cacheable
root-hash is controlled via the threshold parameter, which is similarly passed to BaseMerkleTree and defaults to
128.

Note: For, say, comparison purposes, you can disable this feature by passing disable_cache=Truewhen initializing
the BaseMerkleTree superclass.

18 Chapter 1. Merkle-tree in Python

https://datatracker.ietf.org/doc/html/rfc9162

pymerkle, Release 6.1.0

1.6.4 pymerkle

pymerkle package

Subpackages

pymerkle.concrete package

Submodules

pymerkle.concrete.inmemory module

pymerkle.concrete.sqlite module

Submodules

pymerkle.constants module

pymerkle.core module

pymerkle.hasher module

pymerkle.proof module

pymerkle.utils module

1.7 Indices and tables

• genindex

• modindex

• search

1.7. Indices and tables 19

	Merkle-tree in Python
	Installation
	Basic API
	Inclusion proof
	Consistency proof

	Security
	Resistance against second-preimage attack
	Resistance against CVE-2012-2459 DOS

	Topology
	Storage
	Optimizations
	Public API
	Initialization
	Superclass initialization
	Supported hash functions
	Concrete classes

	Entries
	Hash computation

	Size
	State
	Proofs
	Inclusion
	Consistency
	Serialization

	Storage
	Interface
	Implementations
	In memory
	Sqlite

	Examples
	Simple list
	Unix DBM
	Django app

	Optimizations
	Subroots
	Effect of I/O operation

	Caching

	pymerkle
	pymerkle package
	Subpackages
	pymerkle.concrete package
	Submodules
	pymerkle.concrete.inmemory module
	pymerkle.concrete.sqlite module

	Submodules
	pymerkle.constants module
	pymerkle.core module
	pymerkle.hasher module
	pymerkle.proof module
	pymerkle.utils module

	Indices and tables

